A Novel Hybrid Approach for Interestingness Analysis of Classification Rules
نویسندگان
چکیده
Data mining is the efficient discovery of patterns in large databases, and classification rules are perhaps the most important type of patterns in data mining applications. However, the number of such classification rules is generally very big that selection of interesting ones among all discovered rules becomes an important task. In this paper, factors related to the interestingness of a rule are investigated and some new factors are proposed. Following this, an interactive rule interestingness-learning algorithm (IRIL) is developed to automatically label the classification rules either as “interesting” or “uninteresting” with limited user participation. In our study, VFP (Voting Feature Projections), a feature projection based incremental classification learning algorithm, is also developed in the framework of IRIL. The concept description learned by the VFP algorithm constitutes a novel hybrid approach for interestingness analysis of classification rules.
منابع مشابه
A hybridization of evolutionary fuzzy systems and ant Colony optimization for intrusion detection
A hybrid approach for intrusion detection in computer networks is presented in this paper. The proposed approach combines an evolutionary-based fuzzy system with an Ant Colony Optimization procedure to generate high-quality fuzzy-classification rules. We applied our hybrid learning approach to network security and validated it using the DARPA KDD-Cup99 benchmark data set. The results indicate t...
متن کاملRole of Interestingness Measures in CAR Rule Ordering for Associative Classifier: An Empirical Approach
Associative Classifier is a novel technique which is the integration of Association Rule Mining and Classification. The difficult task in building Associative Classifier model is the selection of relevant rules from a large number of class association rules (CARs). A very popular method of ordering rules for selection is based on confidence, support and antecedent size (CSA). Other methods are ...
متن کاملLearning Interestingness of Streaming Classification Rules
Inducing classification rules on domains from which information is gathered at regular periods lead the number of such classification rules to be generally so huge that selection of interesting ones among all discovered rules becomes an important task. At each period, using the newly gathered information from the domain, the new classification rules are induced. Therefore, these rules stream th...
متن کاملNumeric Multi-Objective Rule Mining Using Simulated Annealing Algorithm
Abstract as a single objective one. Measures like support, confidence and other interestingness criteria which are used for evaluating a rule, can be thought of as different objectives of association rule mining problem. Support count is the number of records, which satisfies all the conditions that exist in the rule. This objective represents the accuracy of the rules extracted from the da...
متن کاملEEG Artifact Removal System for Depression Using a Hybrid Denoising Approach
Introduction: Clinicians use several computer-aided diagnostic systems for depression to authorize their diagnosis. An electroencephalogram (EEG) may be used as an objective tool for early diagnosis of depression and controlling it from reaching a severe and permanent state. However, artifact contamination reduces the accuracy in EEG signal processing systems. Methods: This work proposes a no...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2004